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Fluctuations in the irreversible decay of turbulent energy
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A fluctuation law of the energy in freely decaying, homogeneous, and isotropic turbulence is derived within
standard closure hypotheses for three-dimensional incompressible flow. In particular, a fluctuation-dissipation
relation is derived which relates the strength of a stochastic backscatter term in the energy decay equation to
the mean of the energy dissipation rate. The theory is based on the so-called “effective action” of the energy
history and illustrates a Rayleigh-Ritz method recently developed to evaluate the effective action approxi-
mately within probability density-functiotPDF) closures. These effective actions generalize the Onsager-
Machlup action of nonequilibrium statistical mechanics to turbulent flow. They yield detailed, concrete pre-
dictions for fluctuations, such as multitime correlation functions of arbitrary order, which cannot be obtained
by direct PDF methods. They also characterize the mean histories by a variational principle.
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PACS numbg(s): 47.27.5d, 47.27.Ak, 47.27.Jv, 05.49.

I. INTRODUCTION to turbulence, where fluctuations are large. Recently we have
proposed a generalization which applies as well to strongly
We consider here the problem of fluctuations of the ennoisy systemq11,12. The variational functionals in this
ergy in high Reynolds number turbulence decay. The meatheory, or “effective actions,” have experimental conse-
energy decay in homogeneous and isotropic turbulence hagiences for turbulence fluctuations and are subject to realiz-
been the subject of many classic investigations. A rathe@bility conditions which arise from positivity of the underly-
thorough review is contained ifl], Sec. 16. von Kanan  ing statistical distributions. For each random varia(€) in
and Howarth[2] derived a power decay law for the mean the flow(whereZ may represent a velocity at a chosen point,
energy K, (t)(t—to) ~", by means of a hypothesis of com- & pressure, a turbulent energy, }atbere_is a corresponding
plete self-preservation of the spectrum. The fundamental pffective action’[z], which is a functional of the whole
per of Kolmogorov[3] rederived that result, with a precise time history {z(t):to<t<+cc} of the variable. The realiz-

- . ability conditions on this action function arg) that it be
prediction for the exponenfy=2%2. Kolmogorov's original y ©)

) . nonnegativeI'[z]=0, (ii) that it have the ensemble mean
argument assumed, however, the conservation of the L0|tsyi—(t) as its unique minimuni’[z]=0, and (iii) that it be

ansky invariant, which was later called into question byconvex, AT[z,]+ (1—NT[2]=T[Azy+ (1—\)Z,], 0<A
Proudman and Reif#]. Nevertheless, Kolmogorov's basic 1 asa consequence, the mean vai(® is characterized
argument may still be carried through under a weaker hyhy 3 principle of least effective actiorLike Onsager’s ac-
pothesis, a “principle of permanence of the large eddies."tjon, this functional directly measures the probability of fluc-
This now-standard theory has been discussed in severglations of the sample histories away from the mean history.
books and reviewd:5-7]. According to this theory, the de- The effective action also serves as a generating functional for
cay exponenh is dependent on the initial data, through the (irreducible multitime correlation functions of the consid-
power of the low-wave-number part of the spectrum. ered random variable.

Our interest here is in the fluctuations of the energy his- To make the effective action into a practical working tool,
tory during the decay, including joint multitime statistics. efficient and economical approximation procedures are re-
The main results have been briefly announced elsewB¢re quired to calculate it. 111,12 we have demonstrated one
Our analysis is based on a general approach to fluctuations such scheme, a Rayleigh-Ritz variational method inspired by
irreversible processes, proposed by Onsd§¢rand devel- the similar ones already extensively used in quantum theory.
oped in detail by Onsager and MachluiD]. In this method, This variational method is designed to be used in conjunction
an “action functional” is employed which measures directly with probability density-function(PDF closures, such as
the probability of observing a given history as a fluctuationmapping closureg13,14], generalized Langevin models
event. In particular, the most probable history minimizes thid 15,16, etc. Any reasonable guess of the turbulence statistics
action functional. In systems close to thermal equilibrium,may be input into the variational method to yield approxima-
there is a standard fluctuation-dissipation relation for mo4ions of the effective actions. By this means, predictions are
lecular noise, so that the Onsager-Machlup action has thembtained for multitime statistics which are not obtainable by
the physical interpretation of a “dissipation function.” On- direct PDF methods. The additional information about fluc-
sager’s variational principle reduces near equilibrium to auations has been found to be very useful in evaluating the
“principle of least dissipation,” generalizing the well-known reliability of PDF closures for practical modeling purposes
hydrodynamic principle of Rayleigh. [8].

In its original form, however, Onsager’s principle was The contents of this paper are as follows. In Sec. Il we
restricted to weakly noisy systems and could not be appliegery briefly review the standard theory of the mean energy
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decay in high Reynolds number turbulence and, in particulann>0 so that the spectrum decreases asymptotically at very

we cast it in the form of a PDF-based moment closure. Ifow wave numbers. For grid-generated turbulence it has been

Sec. lll we evaluate the effective action within the standardnferred thatm~2 [17].

theoretical hypotheses, by means of the Rayleigh-Ritz algo- The mean decay law can be derived very simply

rithm. The realizability of the approximate effective action isfrom these hypotheses. One relatiork, (t)=[(«/

verified in the small-fluctuation regime by means of a Lange-A)&23(t)]¥®™*%) is imposed on the spectral parameters by

vin dynamics for the turbulent energy and a fluctuation-requiring continuity ak=k, (t). An additional constraint is

dissipation relation is derived for the strength of the stochasebtained at high Reynolds number by evaluating the dissipa-

tic noise term. In Sec. IV we discuss some of the testablgion rate

consequences of the theory. In particular, the prediction for

the two-time correlation of the turbulent energy is given.

Also, the direct empirical significance of the effective action

is discussed, in terms of fluctuations rsample ensemble

averages. which, for k, (t)<kg4(t), leads tokg(t)=(2/3av)eV4(t).

Only one independent parameter is left, which may be taken

to be the integrak(t) = [ydkE(k,t) representing mean en-

ergy at timet. For the above form of the spectrum it is not
We outline here the standard theory of mean energy decdyard to show that at high Reynolds number, when

in a freely decaying homogeneous and isotropic turbulencé (t) <kq(t), the dissipation is given as

with random initial data at high Reynolds number, following

the reviews in[5—7]. For convenience, we assume a model e()=AnEP(L), 2.3

energy spectrum

s(t)=2vJ:k2E(k,t)dk, (2.2

Il. REVIEW OF THEORY FOR THE MEAN DECAY

with Ar;1=a3/2[1/(m+ 1)+ %](3m+5)/(2m+2)Al/(m+ 1) and
p=(3m+5)/(2m+2). Thus, employing the Navier-Stokes

AK™, k<ku(t) equation via its energy balance, one obtains the closed mo-
E(k,t)=1 ae?¥(t)k 53 Kk (t)<ks<kg(t) (2.1) ment equation
0, k=ky(t)

E(t)=— A ,EP(t). (2.4

which has been adopted in some previous stufiigse.  This generalizes the decay equati@9) in the paper3] of
Such a spectrum may certainly be taken at time, for the ~ Kolmogorov. Its solution with initial conditiorE(to) =K,
initial velocity statistics. We are assuming as well that theregives a prediction for the energy decay law, in the form

is a permanent form of the spectrum, according to which the “\ —n

spectral shape is unchanged in time except through its de- K, () =K (t_to) 2.5
pendence on the parametels), k, (t), andky(t). Note that * o At ' '

the spectrum is not self-preserving, or self-similar, in the

usual sense discussed[it], which would imply that it have with n=(2m+2)/(m+3). Here At=[A(p— 1)K8_1]‘1

the form E(k,t)=ae?3(t)k >3 (k/(t)) for some length is a constant with units of time, determined by the initial
scale/(t). In fact, the spectrum contains two distinct length mean energ,, andtg =t,— At is a “virtual time origin.”
scales, the integral or outer scalét) =k, (t) and the dis- This simple theory may be cast into the form of a PDF
sipation or inner scale(t) =k (t). Certain features of the closure by assuming as #msatzat all timest=t, a Gauss-
above model are crude caricatures of reality. For exampldan random velocity field with zero mean and with spectrum
the spectrum should not vanish fi>ky(t) at any time E(K.t) given by Eq.(2.1). The assumption of Gaussian sta-
t>ty, even if it did so initially. However, the spectrum tistics was not used in previous works. It is not necessary
should always show some rapid exponential decay in the fdfere either, but it makes simpler the analytical labor in ap-
dissipation range. It may be easily checked that such refind?lying the Rayleigh-Ritz algorithm. In fact, the Gausskam
ments do not change any of the results below. The importariatzwill only be used to evaluate averages of one-point ve-
assumption has to do with the low-wave-number part of thdocity moments, which it is known have statistics in actual
spectrum. It was found by Proudman and Reid from the quafact close to Gaussian. SEE8], Chap. VIII. It will be shown
sinormal closurd4] that there is a backscatter terrk® in ~ later that the use of a non-GaussiAnsatzwould change
the energy transfeF(k,t). Hence, as long as<4 one ex- only a constant in the final results. The model spectrum con-
pects that there is a permanence of the low-wave-numbdpins one free parameter, which may be taken to be the en-
spectrum, in the sense that the power kivand its coeffi- €rgy per mas&(t) in the Ansatz or, what is the same, its
cient A remain unchanged in time. On the other hand, ifean value of the quadratic velocity-moment functional
m>4 initially, then it is expected that the spectrum with K(r;v)=2v?(r) at some chosen space pointBy statistical
m=4 will be established at positive times andni=4 ini-  homogeneity, the mean value is independent of this choice.
tially, then the low-wave-number spectrum will remain of The time dependence &ft) is then determined by project-
the same form with a time-dependent coefficiéft). Here  ing the Navier-Stokes dynamics onto this single moment
we always considem<4, so that the “permanence of large function:

eddies” should hold. For finiteness of the total energy, . R

m>—1 must also be imposed and, in fact, we usually take E(t)=<£TK(r)>Em, (2.6
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where and
3 P ~ Sy
£==3, [ 5 s v VR =Tip(r) ADK50 =KL, &7
| in which (---),, denotes the average over the distribution
+vAvi(r)}---) (27 p(t). Likewise,

is the Liouville operator which generates the evolution of -

PDF's for the Navier-Stokes dynamics! is the adjoint op- F[A,f)]= — f dt((a,+ ET)A('{»,‘,(U (3.9
erator which generates the evolution of observables, and to

(- )e(p denotes average with respect to the model Gaussian . o
velocity with energyE(t). It is easy to see that this prescrip- is & generally more useful expression for the nonequilibrium

tion to determine the time dependence leads to action.
_ To obtain the exact effective action, trial functionals
E(t)=—¢g(t), (2.8 should be varied over the full spaces. However, within the

. _ _ _ GaussianAnsatz above, the variation is taken over a re-
which, using Eq(2.3), is clearly equivalent to the one above. stricted class of trial functionals. The right functional is just
However, putting the analysis into this form allows us tothe Gaussian PDF itself:

apply the Rayleigh-Ritz method ¢f.1,12 to evaluate the
effective actions. ) 1 1 ) .
plvit]= WGXF{ 3 f dskvr(k)(E_l)ij(k,t)Uj(k)},
Ill. CALCULATION OF THE ACTION (3.9
We calculate here the effective actibhK] of the energy

history IA<(r,t;v)=%v2(r,t). For each timet, K(r,t) is a
functional on phase space via its dependence on the random E(k,t) ( ki kj)
ij—

with the isotropic spectral tensor

initial datav(r) att=tq of the Navier-Stokes solutiov(r,t). Eij(k,t)= s e
K(t) is a possible value of this random variable, i.e., a nu- ™
merical time history. According to the theorem established in
[11,12, the effective action is characterized as the stationary
point of the “nonequilibrium action functional”

(3.10

which E(k,t) is the scalar spectrum of E¢2.1) for a
ariable total energ¥(t). Mt) is the normalization factor
guaranteeing total probability equal to unity. The left trial
-~ © . functional within the Gaussian PDF closure is chosen from
F[A.P]:ft dt(A(t),(d,— L)p(1)) (31 among arbitrary linear combinations of the moment func-
° tional K[r;v], which appeared in the closure, and the con-

varied over arbitrary left and right “trial functionalsA[v;t] ~ Stant functiona=1:
and p[v;t]. (In [12] these were denote®', ¥R respec-

tively; the hat is used here to denote functionals on the phase ALV;t]= ag(t) 1+ as(t)K[r;v]. (3.1
space of velocity fields.The variations are performed sub-
ject to the constraints of unit overlap The variable functions of timeE(t),aq(t),a(t), are the
. trial parameters of the variational calculation.
(A(1),p(1))=1 (3.2 However, because of the two constraints, E8), (3.7),
- - only one of these parameters is independent. We shall take it
and fixed mearof K(r) notof K(r,t)] to beE(t). The unit overlap condition Eq3.6) requires that
- A~ ao(t) + aq(t)E(t) =1, or that
(A(1),K(r)p(t))=K(t), 3.3
with the initial condition ALV;t]=1+ ay(DIK[rv] - E(D} (3.12
plVito]= ﬁ’o[v], (3.4 by eliminatingag(t). Next @;(t) may be eliminated by us-

R ing the condition Eq(3.7). Since
where Py is the initial Gaussian distribution att,, and L A
with the final condition (AK(N)) gy =E(t) + ay(D[(KA1))em—EAD)],
(3.

Alv; +]=1. (3.5
~ L A . ) ) . the constraint equation is obtained from an easily calculated
Note that(A,p)=DvA[v]p[v]. The trial functionalp(t)  ayerage over the Gaussian ensemble parametrize®(t)y
should be taken to vary over the space of all probability
distributions, while A(t) is varied over the space of all
bounded observables. In this case the constraints become,
more simply,

Using (vi(r)vj(r))ew=38;E(1), this average is found to

~ 5
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Note that evaluation of this one-point moment is the onlyl", [K, ]=0. In fact, usingk*(t)z_Ang(t), the corre-
place where Gaussian statistics is employed in the wholgpondingE, (t) is determined from

calculation. From the imposed condition E®.7) we then

obtain that AmlEZ () =K (1)]=(p—2)An[K, () —E, () ]EZX(1).
(3.19

3
t)=-E 2(t)[K(t)—E(1)]. 3.1
(V) 2 (WK ~EW)] (319 The solution of this equation is

The action may now be approximated as E, (1)=K,(t) and E*(t)z —AREP(). (3.20

I',[KE]= —f dt((de+ LHAM)) g Obviously, substituting these values makes the approximate
fo action vanish identically. It can, in fact, be shown that the
o _ . mean value forany closure is a zero of the approximate
:j dt{ — ag(O(K—E(t)) g+ ax(t) action evaluated by the Rayleigh-Ritz method within that
to same closur¢ll,12. It may even be shown further that the
X[E(t)+(5>5<t)]} mean value is always a stationary point of the action,

ol . [K, ]/ 6K(t)=0. However, it need not be a minimum

* : point, as required by the realizability conditions on the effec-
:ft dtay(O[E() +AREP(D)] tive action.
0

To examine the issue of realizability here, we consider

P s small perturbation& (t) =K, (t) + dK(t) from the predicted
2 dtE “(O)[K()—E(1)] mean. Because the calculation is straightforward but some-
_ 0 what tedious, we give the details in Appendix A. The final
X[E(t)+ AnEP(1)], (3.1 result is that
in which E(t) remains as the only trial parameter. We wrote 3 o [5K(t)+AmpK£‘1(t)5K(t)]2

asfs(r)=(v/Z)Eij[aivj(r)+ajvi(r)]2 the local energy dissi- I',[K]= ST AL dt K

pation rate and noted its average from E@®@.3 as (P=DAm o » (0
(&)ery=AmEP(t). By requiring stationarity of the action un- +0O((8K)2). (3.21)
der variations ofe(t), or, 6T, [K;E]/SE(t) =0, with fixed

K(t), it is straightforward to derive the variational equation y; o again that the coefficienp{ 1) in front of the action

- _ is >0 as long asn>—3. In fact,m>—1 is required to give
AmEP()+K(1)=(p=2)An[K(t) —E(1) ]E 1(t)(.3 17) a finite energy. Thus, for all permissible valuesmof the
' approximate actio', [ K] satisfies realizability, at least in a
For any rational value op=k/I, k,| integers, this is a poly- Small neighborhood of the mean energy histiry(t). One
nomial of degree k in X=EY: (p—1)A X—(p shou_Id be cautioned that satisfaction of realizability is only a
y consistency check and cannot guarantee correctness of pre-
dictions. Indeed, the same calculation as we made above
would carry through exactly for the one-dimensioriaD)

—2)A KX '+K=0. For a physically allowable energy
history, K(t)>0 andK(t)<0. Furthermorep>1 whenever

m=>—3. .Thus—independent Of. thg ;ign ob.(—IZ)—the Burgers equation, since the only property of the nonlinear
ponn_om_|aI has one change of sign in its coefficients for anydynamics that was used was energy conservation. However,
permls,S|bIe energy history. Therefore it follows frqm Des- ot all of the previous results are true for Burgers turbulence.
cartes’ rule of signs that there is exactly one positive ro04, that case the energy spectrum E2.1) is not even the
E(t) for er;ch phys%al cho'lcehd{(t),lowge'np IS rat:ondal. correct quasiequilibrium form but, insteadka? spectrum
secause these are dense In the al, E is uniquely de- develop[19]. This graphically illustrates that realizabil-
fined for all perm|SS|bIeK_. Subs.t|tut|ng that value into the ity is perfectly compatible with falsity. On the other hand,
Eg. (3.16 above, we obtain the final form of the approximate e expect that the approximation to the effective action with
effective action the Kolmogorov spectrum Ed2.1) is qualitatively correct

for 3D Navier-Stokes turbulence. Unfortunately, we have not

p*[K]:; so far been able to show that the full action, £g.18),
2(p—2)An satisfies all realizability constraints for arbitrarily large de-
. y p : p viations 6K.
dt [K(®)+AnE (t)j[lE(tHAmE (M] It may be observed from E@3.2]) that the quadratic part
to EPTH(D) of the approximate action has precisely the form of an

(3.18 Onsager-Machlup actiofl0]. Hence, it follows from the
work of Onsager and Machlup that the same law of fluctua-
in which theE dependence is eliminated by inserting the roottions is realized with the Langevin equation
of Eq. (3.17) as described. i
It is easy to check that, if the approximate action is evalu- SKH (1) + A mpKP (1) 6K T (1) =[2R, (1)]1¥29(t)
ated at the predicted closure mean eneiy(t), then (3.22
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obtained by linearization of the energy-decay equationGaussiamnsatzto describe the energy transfer is hoped not
around its solutiorK, (t) and by addition of a white-noise to drastically affect the result for the effective actiopK ] of
random forcen(t), (n(t)n(t')y=45(t—1t'), with a coeffi- the energy, because the model spectrum(Ed) has built in

cient the correct overall decay rate.
Some insight into this may be obtained by considering the
2(p—1) exact equation for the two-time correlation of the energy
R (= 3 &5 (DK (1), (323 fluctuation. The energy density fluctuatiorsK(r,t)

=K(r,t)—(K(t)) in each individual realization obeys the
This alternative stochastic representation is equivalent in thequation
sense that all finite distributions afK ™ (t) in_the above
Langevin model agree with those predicted &(t) by the SK=—V.[(K+p)v—»VK]— 5. (3.25
guadratic action[Recall from[11,12 thatI'[K] is a gener-
ating functional for irreducible multitime correlation func- Here se =& —(e) is the energy dissipation fluctuation apd
tions of the energ¥K(t). See also Sec. Il.We emphasize is the kinematic pressure. It is this equation which is being
that this linear Langevin representation is only adequate fostatistically modeled by the Langevin equation, E3j22. If
the smaller fluctuations about the mean and will not be sufthis model is to be valid for second-order statistics, then it
ficient to describe the larger fluctuations. In fact, the quaimust be true that the exact equation
dratic part of the action is only a valid approximation for ]
small deviations’K. The predicted decay of the smaller en- (5K (t) 5K (to)) = —(V -[ (K +p)v— »VK](1) K (o))
ergy fluctuations according to a linearized law is similar to ~
the Onsager regression hypothesis for equilibrium fluctua- —(8&(1) 5K(tp)) (3.2
tions[9]. Likewise, the expression E¢B.23 is afluctuation-
dissipation relation(FDR) analogous to that in equilibrium. coincides with the one derived from the Langevin equation.
The white-noise term on the right-hand side of E§22  Fort>t, this is just
represents a stochastic backscatter contribution to the energy .
evolution and Eq(3.23 relates its magnitude to the mean (KT (1) 8K (tg)) =({— L (1) K™ (1)
energy dissipation rate, (t). These are testable predictions

1/2 +
of the closure hypotheses. We expect that the prefactor H2R, ()] (1)} K™ (t0))
C=2%(p—1) in the FDR, whose precise value results from =—L,()(K" (1) K™ (tp)).
the GaussiarAnsatz is correct at least on order of magni- (3.27)

tude. Form=2 its value isC=2~0.56.
The Gaussiaminsatzis obviously inadequate in one re- We have introduced, (t)=A,,pK? *(t) and noted that the
spect, because it fails to capture the important non-Gaussiamhite-noise force is uncorrelated with earlier values of the
effect of scale energy transfer. LH{k) be the usual spectral €nergy fluctuation. In order to coincide with this model equa-
flux as aninstantaneouwariable in individual realizations, tion, itis clear that the first term due to space transport on the
written in terms of a triple product of velocity Fourier coef- left-hand side of Eq.(3.26 should be negligible, i.e.,
ficients. (For example, seg20] for an explicit expression. (V-[(K+p)v—rVK](t) 5K(tp))~0. This is plausible, be-
Then, one expects for freely decaying turbulence in the quasause the space transport term is rapidly varying in time and
sisteady regime tha(tf[(k))E(t)=s(t) for all inertial-range thys deco_rrelated with the energy fluctuation at earlier time.
wave numbers, (t)<k<kgq(t), breaking time-reversal sym- It is for this reason that such higher momef(u$ fourth and
metry. However, within the Gaussiaknsatz(ﬂ(k))E(t)=0. fifth order in velocity were never gxphmtly modeled in our
This pathology of the Gaussignsatzshows up if one cal- analysis, although they are implicitly represented by the
culatesT', [I1], the Gaussian approximation to the effective Whité-noise term in the Langevin equation. The remaining
action of the fluxﬁ(k). In fact, I', [T1] is the Legendre term in th(_a gx_act equation coincides with that in the model
transform of an approximate cumulant-generating functionaf duation: ifitis further assumed that
A.[H], using the notations of [12]. That is,
[, [1T]=maxy(HII-\,[H]). Because the fifth-order mo-

ment(K(r)I1(k))g=0 in the Gaussialnsatz as well as  That is, the conditional expectation of the dissipation fluc-
(TI(k) )g(y =0, it follows by the methods discussed [ib2]  tuation given the value of the energy density over the entire
that\,[H]=0 for all H. Therefore the Legendre transform past should be obtained Hinearizing the expression for

(55(1)|K(s),5<t)~—L, (t)SK(t). (3.28

IS mean dissipation in the closure and evaluating it at the
present value of the energy fluctuation in the given realiza-

= 0, II=0 32 tion. This conditional relation is assumed to hold when the

+[11]= +oo, II#0. (3.24 energiesK(t) are small deviations from the mean value

(K(t))=~K, (t). This formula also has considerable plausi-
This result just implies that, within the Gaussiansatz the  bility: it is a formal statement of the “regression hypothesis”
flux functionII(k) is identically zero in every realization and on small fluctuations. If this relation is used to eliminate
no fluctuations from that value may occur. This is clearly ands(t) in Eq.(3.26), then an equation of the same form as Eq.
unphysical result of the closure. However, the failure of the(3.27) is obtained:
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tions, systematic improvement of the closures will lead to a

(SK(1) 8K (tg) )~ — L, (1) (K(1) 5K (tp)). refined description of the turbulent dynamics.

This should make more transparent the nature of the approxi-
mations in the Rayleigh-Ritz calculation at the level of clo-

sure considered here. The previous theory has testable consequences for turbu-
In fact, it is possible by such arguments to completelyjent energy fluctuations. The most likely experimental situa-
“rederive” the Langevin model. If one accepts the hy-  tjon for such checks is grid turbulence, which well approxi-
pothesis that the rapidly changing terms are correctly modmates a homogeneous, isotropic, decaying turbulence. In
eled by a white noise, i.e., principle, it would be possible to make an experiment by
. . . measuring the velocity at a single pointin the frame of
—V-[(K+p)v—vVK](t)—[ e(t) — (e (1)|K(s),s<t)] mean downstream motion. Constructing from this the energy

~[2R, ()]¥25(1), (3.29 _histpry k(t)E%vz(r,t) gnd compiling an en;emble of _reaI-
izations, one may, as 17,22, compute various multitime

. “ ; com statistics to compare with the theory.
:Qgé{l )etqhue atiLer?:;ezsg)lorreldhuycpeostht%&tsh emLaEr?; e\2/?1 :253 etlh(éq The most familiar such statistics are théime correlation
(3.22. A Kolmogorov-style dimensional analysis would functions (K(ty)---K(t;)). These may be derived directly
yield for the noise strengtiR, (t)=Ce, (1)K, (t) with ¢ from the effective actiod’[K]. In fact, by takingr func-

some universal constant, to be determined. The value of thidonal derivatives of the action, evaluated at the mean value,

. . . the irreducible r-time correlators are obtained:

constantC=5(p—1) resulting from the variational calcula-
tion with the GaussiarAnsatzwill furthermore be shown R R _ ST[K]
below to be the unique choice to recover the relation Eq. (K(ty) - KW' = . (4]
(4.5). Since this relation is exact when single-point statistics OK(ty)--- 6K (1) K=K,
of velocity are Gaussian—which is known to be a very good
approximation—the Langevin model can be entirely moti-For this result, for the definition of irreducible correlators
vated by intuitive considerations. The variational calculationand their relation to the connected correlat@scumulants
is a systematic analytical procedure vyielding the samesee any text in quantum field theory, e[@3], Sec. 6.2.2 or
Langevin model, but also only approximate. The two deriva{24], Sec. 10.2. We only note here that the irreducible two-
tions are therefore very complementary. time correlator, or{(K(t;)K(ty))"™, is the inverse operator

Improvements of the Gaussi@msatzare likely to lead to k(?fnehOf the conpectedA two-time functiofcovariance
‘k‘)etter results for th(?, effective actions. For example, thek (t,)K(t,))%"=(5K(t,) 5K(t,)), i.e.,
synthetic turbulence” models of21] are random velocity
fields which contain the correct energy transfer and also - . A .
some of the intermittency effects of real turbulent velocities. f ds(K(t)K(s))"(SK(s)oK(t"))=48(t—t"). (4.2
Using such statistical models within our Rayleigh-Ritz

scheme should lead not only to a qualitatively correct resulkg|ations between higher-order irreducible and connected
for I'lI1] but also to quantitatively better results #0FK]. In o relators are obtained by taking further functional deriva-
such improved closures new “test functionals” in addition ;e of this relation with respect t6. See[23,24.

to the quadratic moment functionKi(r;v) must be consid- It is very easy to obtain the variational approximation

ered to determine the time dependence of the additional freag(t)k(s»m from Eq. (4.1) and the quadratic part of the
parameters in the statisticAhsatz For example, the energy  ;assian effective action E¢B.21). Taking its inverse, the
flux variable(a triple moment functionawould be a natural covariance( 5k(t) 5f<(t’)> ' i< then evaluated as '
variable to add to the closure. The choice of the “test func- *

tionals” is an equally important element of the closure as is A A ‘ "

the choice of the model velocity statistics. We emphasize <5K(t)5K(t')>*=eXF{—f ds'—*(s)_j dsL, (s)
again that our results above fbif K] depend very little on to to

the choice of the Gaussian statistics. Bay model statistics

IV. TESTING THE THEORY

with the mean energ¥(t) as the only free parameter and ><(5K0)2+2Jm'n{t‘t’}dst(s)

with K(r;v) the corresponding “test functional,” results to

very similar to those above will follow. In that general set- t ¢

ting a result{K?(r))g=BE(t) will hold by dimensional XeXF{—JSde*(r)—L d”—*(f)}

analysis, for some constam®, replacing Eq.(3.14). This

means that the formula E¢3.18 for the approximate action 4.3

will still hold, with the factor? in front simply replaced by

another numbeb =1/(B—1) of order unity. Only the value in our theory. We have again writtelryc(t)=AmpK£‘1(t).
B=2 depends upon the GaussiAnsatz By employing im-  These calculations are outlined in Appendix B. In the same
proved closures one may hope to derive from first principlesvay, by taking an arbitrary number of functional deriva-
such theoretical features as the “permanence of large edives in Eq.(4.1), all correlations of any finite order are ob-
dies” for m<4. Because the Rayleigh-Ritz algorithm is a tainable from the effective action. However, we do not pur-
convergent approximation scheme for the true effective acsue the general calculation here.
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To cast the theoretical results into a form that may becance in grid turbulence. This is based upon the standard
compared with experiment, we insert the mean decay lawdevice of making\ independent trials to calculate the aver-

K, (t) from Eg. (2.5 into Eq. (4.3) and perform the inte- ages from experiment. Indeed, performing the same decay
grals. For the two-time covariance of the turbulent energyexperimentN times independently, one usually considers an

this calculation is straightforward and the prediction is empirical mean history
R R t—tZ)‘ —(n+1) t’—ta‘ —(n+1) . 1 N .
(SK(1)SK(t))5 = A—t) ( A ) Kn(h=5 2 Ki(® (4.6
2 ~
X { (8K )2+ sz (tmin_tg) 1 formed from the realization&;(t), i=1,2,...N, of the N
0 30 At ' different samples(Assuming that the turbulence is indeed

(4.4) statistically homogenequs, thefdeme_:asurements might even
be taken from points;, i=1,... N in the same flow but at

with t,i,=min{tt’}. The notations are the same as for theseparations greater thdn the integral scale, to assure sta-
mean decay law. It should be noted that the first terndistical independenceThe effective actiol’[K] measures
x(8K)? corresponds to decay of an initial energy fluctua-the probability for the empirical meal(t) (which is a
tion 6K,. The second termx KS represents the new fluctua- random quantity at finité&l) to take on a value very different
tions generated by the internal turbulence noise, through thigom the true ensemble averagié(t)). More precisely,
stochastic backscatter dynamics. As a consequence of that _
term, the long-time rms value of the energimdt) Prolf {Ky(t)~K(t):tgst<+o}]~exp —NI'[K]).
={{[ 6K(1)]?),}* evolves to a constant level with respect (4

to the mean energi, (t): Thus the probability to obser\JZN(t) taking any valueK(t)

([5I2(t)]2> 2 other than the true ensemble averdfét)) is exponentially
m _KZT* =3 (4.5 small in the number of sampléé. This is a consequence of
t—o *

the famous Crametheorem on large deviations of sums of
independent random variablés.g., sed 7], Sec. 8.6.4, and
references therein Put another way, the dimensionless
quantity 1I'[K] gives an estimate of the numbrof addi-
tional independent samples required to reduces{igld the
probability of the fluctuation valu& in the empirical aver-

ageKy . In principle, therefore, the effective actidii K] is

The limiting value of  is what would occur for an
asymptotic Gaussian statistics of the one-point velocity vari
able. If we had adopted a non-Gaussfarsatzin our calcu-
lation, then the predicted limiting value would have been
1/D=(B—1). Since any value of the constant can be accom

modated by an appropriate sughsatz it is not so important . ' L .
to the theory which particular constant is corréakhough itself directly measurable in grid turbulence, by assembling a

the Gaussian value is expected to be quite accursibat histogram of observed his_t_qries,\,(t) and determining the
would falsify the present theory would be an experimentad€cay rate of the probabilities for lardé. However, this
finding that the functional form in Eq4.4) was wrong, for would not be feasible W|th.a re.asonable nqmber of indepen-
any possible choice of the constanD1feplacing2. We dent sar_aneN except for historie& (t) sufficiently near the
should emphasize, however, that the standard theory for tH8€2an history. _ _ o
mean energy decay la®, (t) in Eq. (2.5 is in agreement . Th? I_|near_ Langevin model E3.22) is more res_tncted In
with present experiments, with a value mfnear 1.2. In all Its Va“d'.ty' since, as has been stressed, it is gquwalent to the
cases studied so far, PDnsaze adequate to predict the quadratic action and is adequate only to predict second-order
mean values of selected variables have also, employed in o§fatistics ofK(t). In particular, a linear Langevin equation
Rayleigh-Ritz method, yielded good predictions for the fluc-can produce only Gaussian multitime statistics &¢ (t).
tuations of those variables near the means [8pave there-  (Of course, this has nothing to do with the use of a Gaussian
fore expect the prediction in E¢4.4) to be reasonably ac- PDF Ansat;for the ve_locrcy fieldand will be true even if a
curate. non-Gaussiamnsatzis employed: see Appendix AThe

The previous result for=2, the covariance in Eq4.3), true statistics oBK(t) will not be Gaussian at all, e.g., they
may be obtained as well from the Langevin equation, Eqwill be x? if the one-point velocity itself is Gaussian. Nev-
(3.22. However, it must be emphasized that only #meall  ertheless, the Langevin equation can also be given a direct
fluctuations of the energy, withK (t) <K, (t), are expected €mpirical significance in terms of the independbiRtample
to be distributed according to that linearized equation. Be€nsemble, based upon the central limit theorem. It accurately
cause correlation functions will get sizable contributionsdescribes the statistics of the normalized sum variable:
from the larger fluctuations, for which the linear law breaks 1 N
down, it would not be appropriate to compare genertine ” _ YT,
correlation functions oﬁ(t) obtained from the linear theory FK() NT2 ;1 [Ki®={K®)] 48
with experiment. It only happens far=2 that the linear , ) ,
Langevin equation and the futhonlineay effective action ~ ThiS quantity has zero mean and the same covariance as
yield the same predictions. SK;(t)=K;(t) —(K;(t)) for each independent samglei.e.,

It is possible to give both the effective action functional ( SKy(t) SKn(t"))=(5K;(t) 5K;(t")) for all i. However, it is
and the linear Langevin equation a direct empirical signifi-furthermore a Gaussian variable in the limit of laiye in
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agreement with the linear Langevin equation. Thus, at a largéhe energy history. The deterministic part of the equation is
but finite N it is legitimate to compare predictions of the obtained by linearization of the mean decay law and the ran-
correlations ofSK * (t) using the linear Langevin dynamics, dom part has its strength determined by a “fluctuation-
Eq. (3.22, with those from experiment fogkN(t) at large  dissipation relation” in terms of the mean energy dissipation.
N. Notice that the Gaussian statistics @ (t) in fact re- (3) Testable consequences of the theoryratine corre-
sult by substituting intol'[K] in Eq. (4.7 the value :catlo?_ funlcgpﬁps oft_tr;.e en(?rtghy, Wfrf"crt‘. may tt')e o?rtr?med by
R -1/2 A unctional differentiation of the effective action. These are
K=(K)+N"7"0K. In that case, by expanding K, one not obtainable from the starting hypotheses by direct PDF
methods. As an example, the two-time cumulant, or covari-
ance, of the energy history is derived in detail.
Prot[{ék,\,(t)~5K(t):t0st<+oo}]~exp(—l“(2)[5K]), (4) A direct empirical significance of the effective action
4. is given in terms of fluctuation probabilities for ensemble
averages oveN independent samples or ensemble points.
wherel ;[ 5K] is the quadratic approximation to the exact This interpretation permits the effective action itself to be
effective action and terms in the exponent of ordier*?>  measured experimentally, at least for arguments in path
have been neglected in the larlyelimit. This is just one of space sufficiently close to the mean history.
the standard proofs of the central limit theorem. The impor-
tant poi_nt here .is that it naturally gxplains why the linear ACKNOWLEDGMENTS
Langevin equation may be appropriate to calculate second-
order statistics but certainly not higher order. For the latter | wish to thank U. Frisch, N. Goldenfeld, Y. Oono, and D.
purpose the full nonlinear action, E(8.18, must be used, Stein for conversations some years ago which helped me to

obtains

not just the quadratic part. realize that nonequilibrium action principles should have im-
portant applications to strongly noisy systems such as turbu-

V. CONCLUSIONS lence. B. Bayly also asked a very stimulating question re-

garding the operational interpretation of the effective action

The main results of this work are as follows. and R. H. Kraichnan has greatly encouraged the work with

(1) We have derived an action functional, €8.18, for  his interest and ideas.
energy histories in decaying homogeneous and isotropic tur-
bulence at high Reynolds number, by means of a Rayleigh-
Ritz calculation using standard closure assumptions. This ac-
tion generalizes the Onsager-Machlup action to fully
developed turbulent flow and characterizes the mean energy Let us consider in Eq3.18 small fluctuationssK , 5E:
history by a variational principle.

(2) We have shown that the quadratic part of the action, K(t)=K, (t)+6K(t) and E(t)=K,(t)+ SE(t),

Eqg. (3.22), valid for a region of small fluctuations suffi-

ciently near the mean, satisfies all required realizability con-

straints. In fact, it is of the Onsager-Machlup form and thususing the fact thak, (t) =K, (t). It is then easy to see from
has a stochastic realization by a linear Langevin equation foEqg. (3.18 that, up to quadratic order,

APPENDIX A: QUADRATIC APPROXIMATION
TO THE ACTION

Fke 3 f t[5k<t>+Am|or<53*1<t>5E<t>1[6'E<t>+Am|ol<i'fl<t>6E<t>] 2
TR KET() |
|
By a straightforward linearization of the determining Eq. ) . (p—2)
(3.17), it follows that SK()+AmpKL (1) SE(1) = 2p-nd A
—2(p—1)A KD H(SE— 8K) = 8K + A ,pKP 15K, and
(A3)
. o1
Let us introduce a shorthand notation for the left-hand side OB(D)+ AmpK, (1) SE(1)
of this equation: 1 d A
| “28 %@ (2<p—1>AmK2)' "o
A=6K+AnpKP 16K, (A4)

Substituting these into EgA2), it follows that, to quadratic
Using Eq.(A3), it is not hard to show that order,
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(p—2) A model leading to an effective action satisfying the realizabil-
LK== 57 f TpTI ity conditions. In that case, an expansion in small deviations
2(p~2)Am Ji, " 2(p—1) KE . :
oK (t) around the mean must necessarily lead to a quadratic
1 d A expression involving the linearized evolution expression,
XI5 A=K, a(—z(p_ DA K? ) } A(t)= 8K+ A,pKE~*8K. What will be different for other
closures is the coefficient multiplying3(t), which corre-
_ 3 foc A?(t) spond to different predictions of the fluctuations around the
“B(p-DAn Ji, KT mean.
_ ; fwdt d A APPENDIX B: THE PREDICTED TWO-TIME CUMULANT
16(p—1)%Aq Ji,~ dt||K§ . o _
As observed in the text, the irreduciblgime correlations
B 3 =A%) AT of K(t) can be obtained from functional derivativesIyfK ]
- 8(p—1DA, Kp”(t) (A7) atK=K, : see Eq(4.1). Equivalently, these irreducible cor-

relators can be read off from the Taylor series:
To obtain the last line we used the boundary conditions

A(tp)=A()=0, which are required by Eq$3.4), (3.5, 9
and(3.15. It should be obvious that the last line of EA7) I'[K]=>, — dtl---f dt, I (ty,-- ,t,)
is the same as the result, E§.21), claimed in the text. r=2 I
Although the present calculation employed the Gaussian X SK(ty)- - SK(t,), (B1)

Ansatz it should be stressed that a similar result will hold for

more realistic statistical models of the velocity field. In par- ,

ticular, the quadratic form of the action does not dependS(K(t1)--K(t))"™=T'(t;,...t;). Itis thus easy to obtain
upon the Gaussian assumption, but is simply a consequengethe Gaussian apprOX|mat|cQK(tl)K(t2)>'” from the qua-

of the fact that the mean histoig, (t) is required to be an dratic part of the Gaussian action derived in Appendix A,
absolute minimum. Hence, this will be true for any closurewritten as

1 SK(ty)+ L, (t7) SK(ty) [ SK(to) +L, (o) SK(t
K]=+ f dtlf dtz[ (t1) (t1) oK( gi[(tl)( 2) (t2) oK( 2)]5(t1—t2). (82)
[
Then, [0+ L, (3)](SK(S)SK(t,))y
<K(t1)K(t2)>'”—[—atl+ L, (t)I[2R, ()]t =2R, (S)[—ds+L,(s)] *8(s—ty)

X[y, + Ly (t)]6(t— 1) (B3) :2R*(s)ex;{—ft2er*(r) 6(t,—s)

and, from Eq.(4.2), the two-time cumulant must satisfy —G(sit,) (B7)
=G(sity).

[—dt,+Le (1) 1[2R, (t1)] [ dr, + L (t1)]

X( 8K (t1) SK(t2)), = S(t1—t5). (B4)

A second integration forward frory, gives, fort;<t,,

To solve this equation, we use the Green functions

- - t
<5K(tl)5K(t2)>*=ex;{—ftldsL*(s) F(t2)

+ tOdsex;{ f drL, (r)

[—0+L*]1(t,t’)=exr{£dsL*(s) 6(t'—t), (B5) sty
J Sl

(B8)

[a+L*]‘1(t,t’)=exp{—ftdsL*(s) 6(t—t’), (B6)
t, Jd

The first term on the right is an arbitrary solution of the
which are anticausal and causal, respectively. Performingomogeneous equation. The functie(t,) is determined by
one integration we obtain, fa<t,, symmetry and initial conditions as



5422 GREGORY L. EYINK 56

~ ) in the text, is obtained. Note thdf K(ty)]?) defines the
([K(t)]%).  (BY  quantity (5K)2 in Eq. (4.3 of the text.
It is easy to check that this result coincides also with
(K™ (t) K" (to)) calculated from the Langevin model, Eq.
(3.22. However, in general, for correlations of order 2,
When this is substituted into E¢B8) along with the defini-  the Langevin model is not adequate and the above method of
tion of G(s;t,) from Eq. (B7), the claimed result, Eq4.3) calculation from the effective action must be employed.

t2
F(t2)=exr{ - Jt dsL, (s)
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