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Fluctuations in the irreversible decay of turbulent energy
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Department of Mathematics, University of Arizona, Tucson, Arizona 85721
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A fluctuation law of the energy in freely decaying, homogeneous, and isotropic turbulence is derived within
standard closure hypotheses for three-dimensional incompressible flow. In particular, a fluctuation-dissipation
relation is derived which relates the strength of a stochastic backscatter term in the energy decay equation to
the mean of the energy dissipation rate. The theory is based on the so-called ‘‘effective action’’ of the energy
history and illustrates a Rayleigh-Ritz method recently developed to evaluate the effective action approxi-
mately within probability density-function~PDF! closures. These effective actions generalize the Onsager-
Machlup action of nonequilibrium statistical mechanics to turbulent flow. They yield detailed, concrete pre-
dictions for fluctuations, such as multitime correlation functions of arbitrary order, which cannot be obtained
by direct PDF methods. They also characterize the mean histories by a variational principle.
@S1063-651X~97!00811-8#

PACS number~s!: 47.27.Sd, 47.27.Ak, 47.27.Jv, 05.40.1j
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I. INTRODUCTION

We consider here the problem of fluctuations of the
ergy in high Reynolds number turbulence decay. The m
energy decay in homogeneous and isotropic turbulence
been the subject of many classic investigations. A rat
thorough review is contained in@1#, Sec. 16. von Ka´rmán
and Howarth@2# derived a power decay law for the mea
energy,K* (t)}(t2t0)2n, by means of a hypothesis of com
plete self-preservation of the spectrum. The fundamental
per of Kolmogorov@3# rederived that result, with a precis

prediction for the exponent,n5 10
7 . Kolmogorov’s original

argument assumed, however, the conservation of the Lo
ansky invariant, which was later called into question
Proudman and Reid@4#. Nevertheless, Kolmogorov’s bas
argument may still be carried through under a weaker
pothesis, a ‘‘principle of permanence of the large eddie
This now-standard theory has been discussed in sev
books and reviews:@5–7#. According to this theory, the de
cay exponentn is dependent on the initial data, through t
power of the low-wave-number part of the spectrum.

Our interest here is in the fluctuations of the energy h
tory during the decay, including joint multitime statistic
The main results have been briefly announced elsewhere@8#.
Our analysis is based on a general approach to fluctuation
irreversible processes, proposed by Onsager@9# and devel-
oped in detail by Onsager and Machlup@10#. In this method,
an ‘‘action functional’’ is employed which measures direc
the probability of observing a given history as a fluctuati
event. In particular, the most probable history minimizes t
action functional. In systems close to thermal equilibriu
there is a standard fluctuation-dissipation relation for m
lecular noise, so that the Onsager-Machlup action has t
the physical interpretation of a ‘‘dissipation function.’’ On
sager’s variational principle reduces near equilibrium to
‘‘principle of least dissipation,’’ generalizing the well-know
hydrodynamic principle of Rayleigh.

In its original form, however, Onsager’s principle wa
restricted to weakly noisy systems and could not be app
561063-651X/97/56~5!/5413~10!/$10.00
-
n
as
r

a-

y-

-
’’
ral

-

in

s
,
-
re

a

d

to turbulence, where fluctuations are large. Recently we h
proposed a generalization which applies as well to stron
noisy systems@11,12#. The variational functionals in this
theory, or ‘‘effective actions,’’ have experimental cons
quences for turbulence fluctuations and are subject to re
ability conditions which arise from positivity of the underly
ing statistical distributions. For each random variableZ(t) in
the flow~whereZ may represent a velocity at a chosen poi
a pressure, a turbulent energy, etc.! there is a corresponding
effective actionG@z#, which is a functional of the whole
time history $z(t):t0<t,1`% of the variable. The realiz-
ability conditions on this action function are~i! that it be
nonnegative,G@z#>0, ~ii ! that it have the ensemble mea
z̄(t) as its unique minimumG@ z̄#50, and ~iii ! that it be
convex, lG@z1#1(12l)G@z2#>G@lz11(12l)z2#, 0,l
,1. As a consequence, the mean valuez̄(t) is characterized
by a principle of least effective action. Like Onsager’s ac-
tion, this functional directly measures the probability of flu
tuations of the sample histories away from the mean histo
The effective action also serves as a generating functiona
~irreducible! multitime correlation functions of the consid
ered random variable.

To make the effective action into a practical working too
efficient and economical approximation procedures are
quired to calculate it. In@11,12# we have demonstrated on
such scheme, a Rayleigh-Ritz variational method inspired
the similar ones already extensively used in quantum the
This variational method is designed to be used in conjunc
with probability density-function~PDF! closures, such as
mapping closures@13,14#, generalized Langevin model
@15,16#, etc. Any reasonable guess of the turbulence statis
may be input into the variational method to yield approxim
tions of the effective actions. By this means, predictions
obtained for multitime statistics which are not obtainable
direct PDF methods. The additional information about flu
tuations has been found to be very useful in evaluating
reliability of PDF closures for practical modeling purpos
@8#.

The contents of this paper are as follows. In Sec. II
very briefly review the standard theory of the mean ene
5413 © 1997 The American Physical Society
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5414 56GREGORY L. EYINK
decay in high Reynolds number turbulence and, in particu
we cast it in the form of a PDF-based moment closure.
Sec. III we evaluate the effective action within the stand
theoretical hypotheses, by means of the Rayleigh-Ritz a
rithm. The realizability of the approximate effective action
verified in the small-fluctuation regime by means of a Lan
vin dynamics for the turbulent energy and a fluctuatio
dissipation relation is derived for the strength of the stoch
tic noise term. In Sec. IV we discuss some of the testa
consequences of the theory. In particular, the prediction
the two-time correlation of the turbulent energy is give
Also, the direct empirical significance of the effective acti
is discussed, in terms of fluctuations inN-sample ensemble
averages.

II. REVIEW OF THEORY FOR THE MEAN DECAY

We outline here the standard theory of mean energy de
in a freely decaying homogeneous and isotropic turbule
with random initial data at high Reynolds number, followin
the reviews in@5–7#. For convenience, we assume a mod
energy spectrum

E~k,t !5H Akm, k<kL~ t !

a«2/3~ t !k25/3, kL~ t !<k<kd~ t !

0, k>kd~ t !

~2.1!

which has been adopted in some previous studies@17,6#.
Such a spectrum may certainly be taken at timet5t0 for the
initial velocity statistics. We are assuming as well that th
is a permanent form of the spectrum, according to which
spectral shape is unchanged in time except through its
pendence on the parameters«(t), kL(t), andkd(t). Note that
the spectrum is not self-preserving, or self-similar, in t
usual sense discussed in@1#, which would imply that it have
the form E(k,t)5a«2/3(t)k25/3f „kl (t)… for some length
scalel (t). In fact, the spectrum contains two distinct leng
scales, the integral or outer scaleL(t)5kL

21(t) and the dis-
sipation or inner scaleh(t)5kd

21(t). Certain features of the
above model are crude caricatures of reality. For exam
the spectrum should not vanish fork.kd(t) at any time
t.t0 , even if it did so initially. However, the spectrum
should always show some rapid exponential decay in the
dissipation range. It may be easily checked that such refi
ments do not change any of the results below. The impor
assumption has to do with the low-wave-number part of
spectrum. It was found by Proudman and Reid from the q
sinormal closure@4# that there is a backscatter term;k4 in
the energy transferT(k,t). Hence, as long asm,4 one ex-
pects that there is a permanence of the low-wave-num
spectrum, in the sense that the power lawkm and its coeffi-
cient A remain unchanged in time. On the other hand,
m.4 initially, then it is expected that the spectrum wi
m54 will be established at positive times and, ifm54 ini-
tially, then the low-wave-number spectrum will remain
the same form with a time-dependent coefficientA(t). Here
we always considerm,4, so that the ‘‘permanence of larg
eddies’’ should hold. For finiteness of the total energ
m.21 must also be imposed and, in fact, we usually ta
r,
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m.0 so that the spectrum decreases asymptotically at v
low wave numbers. For grid-generated turbulence it has b
inferred thatm'2 @17#.

The mean decay law can be derived very simp
from these hypotheses. One relationkL(t)5@(a/
A)«2/3(t)] 3/(3m15) is imposed on the spectral parameters
requiring continuity atk5kL(t). An additional constraint is
obtained at high Reynolds number by evaluating the diss
tion rate

«~ t !52nE
0

`

k2E~k,t !dk, ~2.2!

which, for kL(t)!kd(t), leads tokd(t)5(2/3an)3/4«1/4(t).
Only one independent parameter is left, which may be ta
to be the integralE(t)5*0

`dkE(k,t) representing mean en
ergy at timet. For the above form of the spectrum it is n
hard to show that at high Reynolds number, wh
kL(t)!kd(t), the dissipation is given as

«~ t !5LmEp~ t !, ~2.3!

with Lm
215a3/2@1/(m11)1 3

2 # (3m15)/(2m12)A1/(m11) and
p5(3m15)/(2m12). Thus, employing the Navier-Stoke
equation via its energy balance, one obtains the closed
ment equation

Ė~ t !52LmEp~ t !. ~2.4!

This generalizes the decay equation~29! in the paper@3# of
Kolmogorov. Its solution with initial conditionE(t0)5K0
gives a prediction for the energy decay law, in the form

K* ~ t !5K0S t2t0*

Dt D 2n

, ~2.5!

with n5(2m12)/(m13). Here Dt[@Lm(p21)K0
p21#21

is a constant with units of time, determined by the init
mean energyK0 , andt0* [t02Dt is a ‘‘virtual time origin.’’

This simple theory may be cast into the form of a PD
closure by assuming as anAnsatzat all timest>t0 a Gauss-
ian random velocity field with zero mean and with spectru
E(k,t) given by Eq.~2.1!. The assumption of Gaussian st
tistics was not used in previous works. It is not necess
here either, but it makes simpler the analytical labor in a
plying the Rayleigh-Ritz algorithm. In fact, the GaussianAn-
satzwill only be used to evaluate averages of one-point
locity moments, which it is known have statistics in actu
fact close to Gaussian. See@18#, Chap. VIII. It will be shown
later that the use of a non-GaussianAnsatzwould change
only a constant in the final results. The model spectrum c
tains one free parameter, which may be taken to be the
ergy per massE(t) in the Ansatz, or, what is the same, its
mean value of the quadratic velocity-moment function

K̂(r ;v)5 1
2 v2(r ) at some chosen space pointr . By statistical

homogeneity, the mean value is independent of this cho
The time dependence ofE(t) is then determined by project
ing the Navier-Stokes dynamics onto this single mom
function:

Ė~ t !5^L†K̂~r !&E~ t ! , ~2.6!
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where

L52(
i 51

3 E d3r
d

dv i~r !
„$2@v~r !–“#v i~r !2¹ i p~r !

1nDv i~r !%•••… ~2.7!

is the Liouville operator which generates the evolution
PDF’s for the Navier-Stokes dynamics,L† is the adjoint op-
erator which generates the evolution of observables,
^•••&E(t) denotes average with respect to the model Gaus
velocity with energyE(t). It is easy to see that this prescrip
tion to determine the time dependence leads to

Ė~ t !52«~ t !, ~2.8!

which, using Eq.~2.3!, is clearly equivalent to the one abov
However, putting the analysis into this form allows us
apply the Rayleigh-Ritz method of@11,12# to evaluate the
effective actions.

III. CALCULATION OF THE ACTION

We calculate here the effective actionG@K# of the energy

history K̂(r ,t;v)5 1
2 v2(r ,t). For each timet, K̂(r ,t) is a

functional on phase space via its dependence on the ran
initial datav(r ) at t5t0 of the Navier-Stokes solutionv(r ,t).
K(t) is a possible value of this random variable, i.e., a n
merical time history. According to the theorem established
@11,12#, the effective action is characterized as the station
point of the ‘‘nonequilibrium action functional’’

G@Â,r̂ #5E
t0

`

dt^Â~ t !,~] t2L!r̂~ t !& ~3.1!

varied over arbitrary left and right ‘‘trial functionals’’Â@v;t#
and r̂@v;t#. ~In @12# these were denotedCL, CR, respec-
tively; the hat is used here to denote functionals on the ph
space of velocity fields.! The variations are performed sub
ject to the constraints of unit overlap

^Â~ t !,r̂~ t !&51 ~3.2!

and fixed mean@of K̂(r ) not of K̂(r ,t)#

^Â~ t !,K̂~r !r̂~ t !&5K~ t !, ~3.3!

with the initial condition

r̂@v;t0#5 P̂0@v#, ~3.4!

where P̂0 is the initial Gaussian distribution att5t0 , and
with the final condition

Â@v;1`#[1. ~3.5!

Note that ^Â,r̂&5*DvÂ@v#r̂@v#. The trial functionalr̂(t)
should be taken to vary over the space of all probabi
distributions, while Â(t) is varied over the space of a
bounded observables. In this case the constraints bec
more simply,

^Â~ t !&r̂~ t !51 ~3.6!
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and

^Â~ t !K̂&r̂~ t !5K~ t !, ~3.7!

in which ^•••&r̂(t) denotes the average over the distributi
r̂(t). Likewise,

G@Â,r̂ #52E
t0

`

dt^~] t1L†!Â~ t !&r̂~ t ! ~3.8!

is a generally more useful expression for the nonequilibri
action.

To obtain the exact effective action, trial functiona
should be varied over the full spaces. However, within
GaussianAnsatzabove, the variation is taken over a r
stricted class of trial functionals. The right functional is ju
the Gaussian PDF itself:

r̂@v;t#5
1

N~ t !
expF2

1

2 E d3kv̂ i* ~k!~E21! i j ~k,t !v̂ j~k!G ,
~3.9!

with the isotropic spectral tensor

Ei j ~k,t !5
E~k,t !

4pk2 S d i j 2
kikj

k2 D ~3.10!

in which E(k,t) is the scalar spectrum of Eq.~2.1! for a
variable total energyE(t). N(t) is the normalization factor
guaranteeing total probability equal to unity. The left tri
functional within the Gaussian PDF closure is chosen fr
among arbitrary linear combinations of the moment fun
tional K̂@r ;v#, which appeared in the closure, and the co
stant functional[1:

Â@v;t#5a0~ t !11a1~ t !K̂@r ;v#. ~3.11!

The variable functions of time,E(t),a0(t),a1(t), are the
trial parameters of the variational calculation.

However, because of the two constraints, Eqs.~3.6!, ~3.7!,
only one of these parameters is independent. We shall ta
to beE(t). The unit overlap condition Eq.~3.6! requires that
a0(t)1a1(t)E(t)51, or that

Â@v;t#511a1~ t !$K̂@r ;v#2E~ t !% ~3.12!

by eliminatinga0(t). Next a1(t) may be eliminated by us
ing the condition Eq.~3.7!. Since

^Â~ t !K̂~r !&E~ t !5E~ t !1a1~ t !@^K̂2~r !&E~ t !2E2~ t !#,
~3.13!

the constraint equation is obtained from an easily calcula
average over the Gaussian ensemble parametrized byE(t).

Using ^v i(r )v j (r )&E(t)5
2
3 d i j E(t), this average is found to

be

^K̂2~r !&E~ t !5
5

3
E2~ t !. ~3.14!
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Note that evaluation of this one-point moment is the o
place where Gaussian statistics is employed in the wh
calculation. From the imposed condition Eq.~3.7! we then
obtain that

a1~ t !5
3

2
E22~ t !@K~ t !2E~ t !#. ~3.15!

The action may now be approximated as

G* @K;E#52E
t0

`

dt^~] t1L†!Â~ t !&E~ t !

5E
t0

`

dt$2ȧ1~ t !^K̂2E~ t !&E~ t !1a1~ t !

3@Ė~ t !1^«̂&E~ t !#%

5E
t0

`

dta1~ t !@Ė~ t !1LmEp~ t !#

5
3

2 E
t0

`

dtE22~ t !@K~ t !2E~ t !#

3@Ė~ t !1LmEp~ t !#, ~3.16!

in which E(t) remains as the only trial parameter. We wro
as«̂(r )5(n/2)( i j @] iv j (r )1] jv i(r )#2 the local energy dissi-
pation rate and noted its average from Eq.~2.3! as
^«̂&E(t)5LmEp(t). By requiring stationarity of the action un
der variations ofE(t), or, dG* @K;E#/dE(t)50, with fixed
K(t), it is straightforward to derive the variational equatio

LmEp~ t !1K̇~ t !5~p22!Lm@K~ t !2E~ t !#Ep21~ t !.
~3.17!

For any rational value ofp5k/ l , k,l integers, this is a poly-
nomial of degree k in X5E1/l : (p21)LmXk2(p
22)LmKXk2 l1K̇50. For a physically allowable energ
history,K(t).0 andK̇(t),0. Furthermore,p.1 whenever
m.23. Thus—independent of the sign of (p22)—the
polynomial has one change of sign in its coefficients for a
permissible energy history. Therefore it follows from De
cartes’ rule of signs that there is exactly one positive r
E(t) for each physical choice ofK(t), when p is rational.
Because these are dense in the realp.0, E is uniquely de-
fined for all permissibleK. Substituting that value into the
Eq. ~3.16! above, we obtain the final form of the approxima
effective action

G* @K#5
3

2~p22!Lm

3E
t0

`

dt
@K̇~ t !1LmEp~ t !#@Ė~ t !1LmEp~ t !#

Ep11~ t !

~3.18!

in which theE dependence is eliminated by inserting the ro
of Eq. ~3.17! as described.

It is easy to check that, if the approximate action is eva
ated at the predicted closure mean energyK* (t), then
le

y
-
t

t

-

G* @K* #50. In fact, usingK̇* (t)52LmK
*
p (t), the corre-

spondingE* (t) is determined from

Lm@E
*
p ~ t !2K

*
p ~ t !#5~p22!Lm@K* ~ t !2E* ~ t !#E

*
p21~ t !.

~3.19!

The solution of this equation is

E* ~ t !5K* ~ t ! and Ė* ~ t !52LmE
*
p ~ t !. ~3.20!

Obviously, substituting these values makes the approxim
action vanish identically. It can, in fact, be shown that t
mean value forany closure is a zero of the approxima
action evaluated by the Rayleigh-Ritz method within th
same closure@11,12#. It may even be shown further that th
mean value is always a stationary point of the actio
dG* @K* #/dK(t)50. However, it need not be a minimum
point, as required by the realizability conditions on the effe
tive action.

To examine the issue of realizability here, we consid
small perturbationsK(t)5K* (t)1dK(t) from the predicted
mean. Because the calculation is straightforward but so
what tedious, we give the details in Appendix A. The fin
result is that

G* @K#5
3

8~p21!Lm
E

t0

`

dt
@dK̇~ t !1LmpK

*
p21~ t !dK~ t !#2

K
*
p11~ t !

1O„~dK !3
…. ~3.21!

Note again that the coefficient (p21) in front of the action
is .0 as long asm.23. In fact,m.21 is required to give
a finite energy. Thus, for all permissible values ofm, the
approximate actionG* @K# satisfies realizability, at least in
small neighborhood of the mean energy historyK* (t). One
should be cautioned that satisfaction of realizability is onl
consistency check and cannot guarantee correctness of
dictions. Indeed, the same calculation as we made ab
would carry through exactly for the one-dimensional~1D!
Burgers equation, since the only property of the nonlin
dynamics that was used was energy conservation. Howe
not all of the previous results are true for Burgers turbulen
In that case the energy spectrum Eq.~2.1! is not even the
correct quasiequilibrium form but, instead, ak22 spectrum
will develop @19#. This graphically illustrates that realizabi
ity is perfectly compatible with falsity. On the other han
we expect that the approximation to the effective action w
the Kolmogorov spectrum Eq.~2.1! is qualitatively correct
for 3D Navier-Stokes turbulence. Unfortunately, we have
so far been able to show that the full action, Eq.~3.18!,
satisfies all realizability constraints for arbitrarily large d
viationsdK.

It may be observed from Eq.~3.21! that the quadratic par
of the approximate action has precisely the form of
Onsager-Machlup action@10#. Hence, it follows from the
work of Onsager and Machlup that the same law of fluct
tions is realized with the Langevin equation

dK̇1~ t !1LmpK
*
p21~ t !dK1~ t !5@2R* ~ t !#1/2h~ t !

~3.22!
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obtained by linearization of the energy-decay equat
around its solutionK* (t) and by addition of a white-noise
random forceh(t), ^h(t)h(t8)&5d(t2t8), with a coeffi-
cient

R* ~ t !5
2~p21!

3
«* ~ t !K* ~ t !. ~3.23!

This alternative stochastic representation is equivalent in
sense that all finite distributions ofdK1(t) in the above
Langevin model agree with those predicted fordK̂(t) by the
quadratic action.†Recall from@11,12# that G@K# is a gener-
ating functional for irreducible multitime correlation func
tions of the energyK̂(t). See also Sec. III.‡ We emphasize
that this linear Langevin representation is only adequate
the smaller fluctuations about the mean and will not be s
ficient to describe the larger fluctuations. In fact, the q
dratic part of the action is only a valid approximation f
small deviationsdK. The predicted decay of the smaller e
ergy fluctuations according to a linearized law is similar
the Onsager regression hypothesis for equilibrium fluct
tions@9#. Likewise, the expression Eq.~3.23! is afluctuation-
dissipation relation~FDR! analogous to that in equilibrium
The white-noise term on the right-hand side of Eq.~3.22!
represents a stochastic backscatter contribution to the en
evolution and Eq.~3.23! relates its magnitude to the mea
energy dissipation rate«* (t). These are testable prediction
of the closure hypotheses. We expect that the prefa

C5 2
3 (p21) in the FDR, whose precise value results fro

the GaussianAnsatz, is correct at least on order of magn

tude. Form52 its value isC5 5
9 '0.56.

The GaussianAnsatzis obviously inadequate in one re
spect, because it fails to capture the important non-Gaus
effect of scale energy transfer. LetP̂(k) be the usual spectra
flux as aninstantaneousvariable in individual realizations
written in terms of a triple product of velocity Fourier coe
ficients. ~For example, see@20# for an explicit expression.!
Then, one expects for freely decaying turbulence in the q
sisteady regime that̂P̂(k)&E(t)5«(t) for all inertial-range
wave numberskL(t)!k!kd(t), breaking time-reversal sym
metry. However, within the GaussianAnsatz^P̂(k)&E(t)50.
This pathology of the GaussianAnsatzshows up if one cal-
culatesG* @P#, the Gaussian approximation to the effecti
action of the fluxP̂(k). In fact, G* @P# is the Legendre
transform of an approximate cumulant-generating functio
l* @H#, using the notations of @12#. That is,
G* @P#5maxH(HP2l* @H#). Because the fifth-order mo
ment ^K̂(r )P̂(k)&E(t)50 in the GaussianAnsatz, as well as
^P̂(k)&E(t)50, it follows by the methods discussed in@12#
that l* @H#[0 for all H. Therefore the Legendre transfor
is

G* @P#5H 0, P50

1`, PÞ0.
~3.24!

This result just implies that, within the GaussianAnsatz, the
flux functionP̂(k) is identically zero in every realization an
no fluctuations from that value may occur. This is clearly
unphysical result of the closure. However, the failure of
n

e
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or

an

a-

l

n
e

GaussianAnsatzto describe the energy transfer is hoped n
to drastically affect the result for the effective actionG@K# of
the energy, because the model spectrum Eq.~2.1! has built in
the correct overall decay rate.

Some insight into this may be obtained by considering
exact equation for the two-time correlation of the energ
fluctuation. The energy density fluctuationdK̂(r ,t)
5K̂(r ,t)2^K̂(t)& in each individual realization obeys th
equation

d K̇̂52“–@~K̂1 p̂!v2n“K̂#2d«̂. ~3.25!

Hered«̂5 «̂2^«̂& is the energy dissipation fluctuation andp̂
is the kinematic pressure. It is this equation which is be
statistically modeled by the Langevin equation, Eq.~3.22!. If
this model is to be valid for second-order statistics, then
must be true that the exact equation

^d K̇̂~ t !dK̂~ t0!&52^“–@~K̂1 p̂!v2n“K̂#~ t !dK̂~ t0!&

2^d«̂~ t !dK̂~ t0!& ~3.26!

coincides with the one derived from the Langevin equati
For t.t0 this is just

^dK̇1~ t !dK1~ t0!&5^$2L* ~ t !dK1~ t !

1@2R* ~ t !#1/2h~ t !%dK1~ t0!&

52L* ~ t !^dK1~ t !dK1~ t0!&.

~3.27!

We have introducedL* (t)5LmpK
*
p21(t) and noted that the

white-noise force is uncorrelated with earlier values of t
energy fluctuation. In order to coincide with this model equ
tion, it is clear that the first term due to space transport on
left-hand side of Eq.~3.26! should be negligible, i.e.
^“–@(K̂1 p̂)v2n“K̂#(t)dK̂(t0)&'0. This is plausible, be-
cause the space transport term is rapidly varying in time
thus decorrelated with the energy fluctuation at earlier tim
It is for this reason that such higher moments~of fourth and
fifth order in velocity! were never explicitly modeled in ou
analysis, although they are implicitly represented by
white-noise term in the Langevin equation. The remain
term in the exact equation coincides with that in the mo
equation, if it is further assumed that

^d«̂~ t !uK̂~s!,s,t&'2L* ~ t !dK̂~ t !. ~3.28!

That is, the conditional expectation of the dissipation flu
tuation given the value of the energy density over the en
past should be obtained bylinearizing the expression for
mean dissipation in the closure and evaluating it at
present value of the energy fluctuation in the given reali
tion. This conditional relation is assumed to hold when t
energiesK̂(t) are small deviations from the mean valu
^K̂(t)&'K* (t). This formula also has considerable plau
bility: it is a formal statement of the ‘‘regression hypothesis
on small fluctuations. If this relation is used to elimina
d«̂(t) in Eq. ~3.26!, then an equation of the same form as E
~3.27! is obtained:
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^d K̇̂~ t !dK̂~ t0!&'2L* ~ t !^dK̂~ t !dK̂~ t0!&.

This should make more transparent the nature of the appr
mations in the Rayleigh-Ritz calculation at the level of c
sure considered here.

In fact, it is possible by such arguments to complet
‘‘rederive’’ the Langevin model. If one accepts~i! the hy-
pothesis that the rapidly changing terms are correctly m
eled by a white noise, i.e.,

2“–@~K̂1 p̂!v2n“K̂#~ t !2@d«̂~ t !2^d«̂~ t !uK̂~s!,s,t&#

'@2R* ~ t !#1/2h~ t !, ~3.29!

and ~ii ! the ‘‘regression hypothesis’’ in Eq.~3.28!, then the
exact equation~3.25! reduces to the Langevin model E
~3.22!. A Kolmogorov-style dimensional analysis wou
yield for the noise strengthR* (t)5C«* (t)K* (t) with C
some universal constant, to be determined. The value of

constantC5 2
3 (p21) resulting from the variational calcula

tion with the GaussianAnsatzwill furthermore be shown
below to be the unique choice to recover the relation
~4.5!. Since this relation is exact when single-point statist
of velocity are Gaussian—which is known to be a very goo
approximation—the Langevin model can be entirely mo
vated by intuitive considerations. The variational calculat
is a systematic analytical procedure yielding the sa
Langevin model, but also only approximate. The two deri
tions are therefore very complementary.

Improvements of the GaussianAnsatzare likely to lead to
better results for the effective actions. For example,
‘‘synthetic turbulence’’ models of@21# are random velocity
fields which contain the correct energy transfer and a
some of the intermittency effects of real turbulent velociti
Using such statistical models within our Rayleigh-R
scheme should lead not only to a qualitatively correct re
for G@P# but also to quantitatively better results forG@K#. In
such improved closures new ‘‘test functionals’’ in additio
to the quadratic moment functionalK̂(r ;v) must be consid-
ered to determine the time dependence of the additional
parameters in the statisticalAnsatz. For example, the energ
flux variable~a triple moment functional! would be a natural
variable to add to the closure. The choice of the ‘‘test fun
tionals’’ is an equally important element of the closure as
the choice of the model velocity statistics. We emphas
again that our results above forG@K# depend very little on
the choice of the Gaussian statistics. Foranymodel statistics
with the mean energyE(t) as the only free parameter an
with K̂(r ;v) the corresponding ‘‘test functional,’’ result
very similar to those above will follow. In that general se
ting a result^K̂2(r )&E(t)5BE2(t) will hold by dimensional
analysis, for some constantB, replacing Eq.~3.14!. This
means that the formula Eq.~3.18! for the approximate action
will still hold, with the factor 3

2 in front simply replaced by
another numberD51/(B21) of order unity. Only the value
B5 5

3 depends upon the GaussianAnsatz. By employing im-
proved closures one may hope to derive from first princip
such theoretical features as the ‘‘permanence of large
dies’’ for m,4. Because the Rayleigh-Ritz algorithm is
convergent approximation scheme for the true effective
xi-
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tions, systematic improvement of the closures will lead to
refined description of the turbulent dynamics.

IV. TESTING THE THEORY

The previous theory has testable consequences for tu
lent energy fluctuations. The most likely experimental situ
tion for such checks is grid turbulence, which well appro
mates a homogeneous, isotropic, decaying turbulence
principle, it would be possible to make an experiment
measuring the velocity at a single pointr in the frame of
mean downstream motion. Constructing from this the ene

history K̂(t)[ 1
2 v2(r ,t) and compiling an ensemble of rea

izations, one may, as in@17,22#, compute various multitime
statistics to compare with the theory.

The most familiar such statistics are ther -time correlation
functions ^K̂(t1)•••K̂(t r)&. These may be derived directl
from the effective actionG@K#. In fact, by takingr func-
tional derivatives of the action, evaluated at the mean va
the irreducible r-time correlators are obtained:

^K̂~ t1!•••K̂~ t r !&
irr5

d rG@K#

dK~ t1!•••dK~ t r !
U

K5K
*

. ~4.1!

For this result, for the definition of irreducible correlato
and their relation to the connected correlators~or cumulants!,
see any text in quantum field theory, e.g.,@23#, Sec. 6.2.2 or
@24#, Sec. 10.2. We only note here that the irreducible tw
time correlator, or̂ K̂(t1)K̂(t2)& irr, is the inverse operato
kernel of the connected two-time function~covariance!
^K̂(t1)K̂(t2)&con5^dK̂(t1)dK̂(t2)&, i.e.,

E dŝ K̂~ t !K̂~s!& irr^dK̂~s!dK̂~ t8!&5d~ t2t8!. ~4.2!

Relations between higher-order irreducible and connec
correlators are obtained by taking further functional deriv
tives of this relation with respect toK. See@23,24#.

It is very easy to obtain the variational approximatio
^K̂(t)K̂(s)&*

irr from Eq. ~4.1! and the quadratic part of th
Gaussian effective action, Eq.~3.21!. Taking its inverse, the
covariancê dK̂(t)dK̂(t8)&* is then evaluated as

^dK̂~ t !dK̂~ t8!&* 5expF2E
t0

t

dsL* ~s!2E
t0

t8
dsL* ~s!G

3~dK0!212E
t0

min$t,t8%
dsR* ~s!

3expF2E
s

t

drL* ~r !2E
s

t8
drL* ~r !G

~4.3!

in our theory. We have again writtenL* (t)5LmpK
*
p21(t).

These calculations are outlined in Appendix B. In the sa
way, by taking an arbitrary numberr of functional deriva-
tives in Eq.~4.1!, all correlations of any finite order are ob
tainable from the effective action. However, we do not p
sue the general calculation here.
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To cast the theoretical results into a form that may
compared with experiment, we insert the mean decay
K* (t) from Eq. ~2.5! into Eq. ~4.3! and perform the inte-
grals. For the two-time covariance of the turbulent ene
this calculation is straightforward and the prediction is

^dK̂~ t !dK̂~ t8!&* 5S t2t0*

Dt D 2~n11!S t82t0*

Dt D 2~n11!

3H ~dK0!21
2

3
K0

2F S tmin2t0*

Dt D 2

21G J ,

~4.4!

with tmin5min$t,t8%. The notations are the same as for t
mean decay law. It should be noted that the first te
}(dK0)2 corresponds to decay of an initial energy fluctu
tion dK0 . The second term}K0

2 represents the new fluctua
tions generated by the internal turbulence noise, through
stochastic backscatter dynamics. As a consequence of
term, the long-time rms value of the energy,K rms(t)
5$^@dK̂(t)#2&* %1/2, evolves to a constant level with respe
to the mean energyK* (t):

lim
t→`

^@dK̂~ t !#2&*
K

*
2 ~ t !

5
2

3
. ~4.5!

The limiting value of 2
3 is what would occur for an

asymptotic Gaussian statistics of the one-point velocity v
able. If we had adopted a non-GaussianAnsatzin our calcu-
lation, then the predicted limiting value would have be
1/D5(B21). Since any value of the constant can be acco
modated by an appropriate suchAnsatz, it is not so important
to the theory which particular constant is correct~although
the Gaussian value is expected to be quite accurate!. What
would falsify the present theory would be an experimen
finding that the functional form in Eq.~4.4! was wrong, for
any possible choice of the constant 1/D replacing 2

3 . We
should emphasize, however, that the standard theory for
mean energy decay lawK* (t) in Eq. ~2.5! is in agreement
with present experiments, with a value ofn near 1.2. In all
cases studied so far, PDFAnsätze adequate to predict th
mean values of selected variables have also, employed in
Rayleigh-Ritz method, yielded good predictions for the flu
tuations of those variables near the means. See@8#. We there-
fore expect the prediction in Eq.~4.4! to be reasonably ac
curate.

The previous result forr 52, the covariance in Eq.~4.3!,
may be obtained as well from the Langevin equation,
~3.22!. However, it must be emphasized that only thesmall
fluctuations of the energy, withdK̂(t)!K* (t), are expected
to be distributed according to that linearized equation. B
cause correlation functions will get sizable contributio
from the larger fluctuations, for which the linear law brea
down, it would not be appropriate to compare generalr -time
correlation functions ofK̂(t) obtained from the linear theor
with experiment. It only happens forr 52 that the linear
Langevin equation and the full~nonlinear! effective action
yield the same predictions.

It is possible to give both the effective action function
and the linear Langevin equation a direct empirical sign
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he
hat

i-

-

l

he

ur
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l
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cance in grid turbulence. This is based upon the stand
device of makingN independent trials to calculate the ave
ages from experiment. Indeed, performing the same de
experimentN times independently, one usually considers
empirical mean history

K̄N~ t !5
1

N (
i 51

N

K̂i~ t ! ~4.6!

formed from the realizationsK̂ i(t), i 51,2, . . . ,N, of the N
different samples.~Assuming that the turbulence is indee
statistically homogeneous, theseN measurements might eve
be taken from pointsr i , i 51, . . . ,N in the same flow but at
separations greater thanL, the integral scale, to assure st
tistical independence.! The effective actionG@K# measures
the probability for the empirical meanK̄N(t) ~which is a
random quantity at finiteN! to take on a value very differen
from the true ensemble average^K̂(t)&. More precisely,

Prob@$K̄N~ t !'K~ t !:t0<t,1`%#;exp~2NG@K# !.
~4.7!

Thus the probability to observeK̄N(t) taking any valueK(t)
other than the true ensemble average^K̂(t)& is exponentially
small in the number of samplesN. This is a consequence o
the famous Crame´r theorem on large deviations of sums
independent random variables~e.g., see@7#, Sec. 8.6.4, and
references therein!. Put another way, the dimensionle
quantity 1/G@K# gives an estimate of the numberN of addi-
tional independent samples required to reduce bye-fold the
probability of the fluctuation valueK in the empirical aver-
ageK̄N . In principle, therefore, the effective actionG@K# is
itself directly measurable in grid turbulence, by assemblin
histogram of observed historiesK̄N(t) and determining the
decay rate of the probabilities for largeN. However, this
would not be feasible with a reasonable number of indep
dent samplesN except for historiesK(t) sufficiently near the
mean history.

The linear Langevin model Eq.~3.22! is more restricted in
its validity, since, as has been stressed, it is equivalent to
quadratic action and is adequate only to predict second-o
statistics ofK̂(t). In particular, a linear Langevin equatio
can produce only Gaussian multitime statistics fordK1(t).
~Of course, this has nothing to do with the use of a Gauss
PDF Ansatzfor the velocity fieldand will be true even if a
non-GaussianAnsatz is employed: see Appendix A.! The
true statistics ofdK̂(t) will not be Gaussian at all, e.g., the
will be x2 if the one-point velocity itself is Gaussian. Nev
ertheless, the Langevin equation can also be given a d
empirical significance in terms of the independentN-sample
ensemble, based upon the central limit theorem. It accura
describes the statistics of the normalized sum variable:

dK̂N~ t !5
1

N1/2 (
i 51

N

@K̂ i~ t !2^K̂~ t !&#. ~4.8!

This quantity has zero mean and the same covarianc
dK̂ i(t)5K̂ i(t)2^K̂ i(t)& for each independent samplei , i.e.,
^dK̂N(t)dK̂N(t8)&5^dK̂ i(t)dK̂ i(t8)& for all i . However, it is
furthermore a Gaussian variable in the limit of largeN, in



rg
e
,

ct

or
a
n

tte
,

tu
ig
a
lly
er

on
-
on
u
f

is
an-
n-
n.

by
re
DF
ari-

n
le
ts.

be
ath

.
e to
m-
rbu-
re-
ion
ith

5420 56GREGORY L. EYINK
agreement with the linear Langevin equation. Thus, at a la
but finite N it is legitimate to compare predictions of th
correlations ofdK1(t) using the linear Langevin dynamics
Eq. ~3.22!, with those from experiment fordK̂N(t) at large
N. Notice that the Gaussian statistics fordK̂N(t) in fact re-
sult by substituting intoG@K# in Eq. ~4.7! the value
K5^K̂&1N21/2dK. In that case, by expanding indK, one
obtains

Prob@$dK̂N~ t !'dK~ t !:t0<t,1`%#;exp~2G~2!@dK# !,
~4.9!

whereG (2)@dK# is the quadratic approximation to the exa
effective action and terms in the exponent of orderN21/2

have been neglected in the largeN limit. This is just one of
the standard proofs of the central limit theorem. The imp
tant point here is that it naturally explains why the line
Langevin equation may be appropriate to calculate seco
order statistics but certainly not higher order. For the la
purpose the full nonlinear action, Eq.~3.18!, must be used
not just the quadratic part.

V. CONCLUSIONS

The main results of this work are as follows.
~1! We have derived an action functional, Eq.~3.18!, for

energy histories in decaying homogeneous and isotropic
bulence at high Reynolds number, by means of a Rayle
Ritz calculation using standard closure assumptions. This
tion generalizes the Onsager-Machlup action to fu
developed turbulent flow and characterizes the mean en
history by a variational principle.

~2! We have shown that the quadratic part of the acti
Eq. ~3.21!, valid for a region of small fluctuations suffi
ciently near the mean, satisfies all required realizability c
straints. In fact, it is of the Onsager-Machlup form and th
has a stochastic realization by a linear Langevin equation
q

id
e

-
r
d-
r

r-
h-
c-

gy

,

-
s
or

the energy history. The deterministic part of the equation
obtained by linearization of the mean decay law and the r
dom part has its strength determined by a ‘‘fluctuatio
dissipation relation’’ in terms of the mean energy dissipatio

~3! Testable consequences of the theory arer -time corre-
lation functions of the energy, which may be obtained
functional differentiation of the effective action. These a
not obtainable from the starting hypotheses by direct P
methods. As an example, the two-time cumulant, or cov
ance, of the energy history is derived in detail.

~4! A direct empirical significance of the effective actio
is given in terms of fluctuation probabilities for ensemb
averages overN independent samples or ensemble poin
This interpretation permits the effective action itself to
measured experimentally, at least for arguments in p
space sufficiently close to the mean history.
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APPENDIX A: QUADRATIC APPROXIMATION
TO THE ACTION

Let us consider in Eq.~3.18! small fluctuationsdK,dE:

K~ t !5K* ~ t !1dK~ t ! and E~ t !5K* ~ t !1dE~ t !,
~A1!

using the fact thatE* (t)5K* (t). It is then easy to see from
Eq. ~3.18! that, up to quadratic order,
G* @K#5
3

2~p22!Lm
E

t0

`

dt
@dK̇~ t !1LmpK

*
p21~ t !dE~ t !#@dĖ~ t !1LmpK

*
p21~ t !dE~ t !#

K
*
p11~ t !

. ~A2!
By a straightforward linearization of the determining E
~3.17!, it follows that

22~p21!LmK
*
p21~dE2dK !5dK̇1LmpK

*
p21dK.

~A3!

Let us introduce a shorthand notation for the left-hand s
of this equation:

D[dK̇1LmpK
*
p21dK. ~A4!

Using Eq.~A3!, it is not hard to show that
.

e

dK̇~ t !1LmpK
*
p21~ t !dE~ t !5

~p22!

2~p21!
D ~A5!

and

dĖ~ t !1LmpK
*
p21~ t !dE~ t !

5
1

2
D2K*

d

dt S D

2~p21!LmK
*
p D . ~A6!

Substituting these into Eq.~A2!, it follows that, to quadratic
order,
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G* @K#5
3

2~p22!Lm
E

t0

`

dt
~p22!

2~p21!

D

K
*
p11

3F1

2
D2K*

d

dt S D

2~p21!LmK
*
p D G

5
3

8~p21!Lm
E

t0

`

dt
D2~ t !

K
*
p11~ t !

2
3

16~p21!2Lm
2 E

t0

`

dt
d

dt F S D

K
*
p D 2G

5
3

8~p21!Lm
E

t0

`

dt
D2~ t !

K
*
p11~ t !

. ~A7!

To obtain the last line we used the boundary conditio
D(t0)5D(`)50, which are required by Eqs.~3.4!, ~3.5!,
and~3.15!. It should be obvious that the last line of Eq.~A7!
is the same as the result, Eq.~3.21!, claimed in the text.

Although the present calculation employed the Gauss
Ansatz, it should be stressed that a similar result will hold f
more realistic statistical models of the velocity field. In pa
ticular, the quadratic form of the action does not depe
upon the Gaussian assumption, but is simply a consequ
of the fact that the mean historyK* (t) is required to be an
absolute minimum. Hence, this will be true for any closu
in
s

n

-
d
ce

model leading to an effective action satisfying the realizab
ity conditions. In that case, an expansion in small deviatio
dK(t) around the mean must necessarily lead to a quadr
expression involving the linearized evolution expressio
D(t)5dK̇1LmpK

*
p21dK. What will be different for other

closures is the coefficient multiplyingD2(t), which corre-
spond to different predictions of the fluctuations around
mean.

APPENDIX B: THE PREDICTED TWO-TIME CUMULANT

As observed in the text, the irreducibler -time correlations
of K̂(t) can be obtained from functional derivatives ofG@K#
at K5K* : see Eq.~4.1!. Equivalently, these irreducible cor
relators can be read off from the Taylor series:

G@K#5(
r 52

`
1

r ! E dt1•••E dtrG r~ t1 ,••• ,t r !

3dK~ t1!•••dK~ t r !, ~B1!

as^K̂(t1)•••K̂(t r)&
irr5G r(t1 ,...,t r). It is thus easy to obtain

in the Gaussian approximation^K̂(t1)K̂(t2)&*
irr from the qua-

dratic part of the Gaussian action derived in Appendix
written as
G* @K#5
1

2 E dt1E dt2
@dK̇~ t1!1L* ~ t1!dK~ t1!#@dK̇~ t2!1L* ~ t2!dK~ t2!#

2R* ~ t1!
d~ t12t2!. ~B2!
e

Then,

^K̂~ t1!K̂~ t2!&*
irr5@2] t1

1L* ~ t1!#@2R* ~ t1!#21

3@] t1
1L* ~ t1!#d~ t12t2! ~B3!

and, from Eq.~4.2!, the two-time cumulant must satisfy

@2] t1
1L* ~ t1!#@2R* ~ t1!#21@] t1

1L* ~ t1!#

3^dK̂~ t1!dK̂~ t2!&* 5d~ t12t2!. ~B4!

To solve this equation, we use the Green functions

@2]1L* #21~ t,t8!5expF E
t8

t

dsL* ~s!Gu~ t82t !, ~B5!

@]1L* #21~ t,t8!5expF2E
t8

t

dsL* ~s!Gu~ t2t8!, ~B6!

which are anticausal and causal, respectively. Perform
one integration we obtain, fors<t2 ,
g

@]s1L* ~s!#^dK̂~s!dK̂~ t2!&*
52R* ~s!@2]s1L* ~s!#21d~s2t2!

52R* ~s!expF2E
s

t2
drL* ~r !Gu~ t22s!

[G~s;t2!. ~B7!

A second integration forward fromt0 gives, fort1<t2 ,

^dK̂~ t1!dK̂~ t2!&* 5expF2E
t0

t1
dsL* ~s!GF~ t2!

1E
t0

t1
dsexpF2E

s

t1
drL* ~r !GG~s;t2!.

~B8!

The first term on the right is an arbitrary solution of th
homogeneous equation. The functionF(t2) is determined by
symmetry and initial conditions as



ith
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F~ t2!5expF2E
t0

t2
dsL* ~s!G^@dK̂~ t0!#2&. ~B9!

When this is substituted into Eq.~B8! along with the defini-
tion of G(s;t2) from Eq. ~B7!, the claimed result, Eq.~4.3!
A

on

y
,

-

in the text, is obtained. Note that^@dK̂(t0)#2& defines the
quantity (dK0)2 in Eq. ~4.3! of the text.

It is easy to check that this result coincides also w
^dK1(t)dK1(t0)& calculated from the Langevin model, Eq
~3.22!. However, in general, for correlations of orderr .2,
the Langevin model is not adequate and the above metho
calculation from the effective action must be employed.
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